
CSS Animation

A Brief History of Web Animation
Throughout the 2000s, animation on the web was mostly done in Flash, a
multimedia authoring program owned by Adobe.

Flash was notoriously resource-intensive. (I remember some Flash games
would often crash the computers in grade school.) Flash support was
never included on the iPhone for this reason, and as more people surfed
the web on their phones, websites stopped using Flash altogether.

In 2009, WebKit, the browser engine developed by Apple, announced that
it had implemented CSS Animations, and other browsers soon followed.

https://en.wikipedia.org/wiki/Adobe_Animate#History
https://en.wikipedia.org/wiki/WebKit

What are CSS Animations?
CSS animations allow an
element to gradually
change style.

Keyframes
@keyframes grow {
 0% {
 height: 0;
 }
 100% {
 height: 80px;
 }
}

In your CSS:

Every CSS animation needs
a set of keyframes.

Here, we create a keyframe
rule for an animation named
grow.

The animation will make
some element’s height start
at 0 and end at 80px.

Properties
.plant {
 animation-name: grow;
 animation-duration: 6s;
}

@keyframes grow {
 0% {
 height: 0;
 }
 100% {
 height: 80px;
 }
}

Next, we bind the animation
to an element.

Here, we specify that every
element with the class plant
will run the animation grow
for 6 seconds.

In your CSS:

Properties
This is the bare minimum
you need to create a CSS
animation.

.plant {
 animation-name: grow;
 animation-duration: 6s;
}

@keyframes grow {
 0% {
 height: 0;
 }
 100% {
 height: 80px;
 }
}

In your CSS:

Properties
.plant {
 animation-name: grow;
 animation-duration: 6s;
 animation-delay: 2s;
}

@keyframes grow {
 0% {
 height: 0;
 }
 100% {
 height: 80px;
 }
}

Other animation properties:

animation-delay offsets the
beginning of the animation.

Here, we tell CSS to wait 2
seconds before starting grow.

In your CSS:

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations

Properties
Other animation properties:

animation-delay offsets the
beginning of the animation.

A negative animation-delay
tells CSS to start grow
immediately, but midway
through the keyframes.

.plant {
 animation-name: grow;
 animation-duration: 6s;
 animation-delay: -2s;
}

@keyframes grow {
 0% {
 height: 0;
 }
 100% {
 height: 80px;
 }
}

In your CSS:

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations

Properties
Other animation properties:

animation-iteration-count
defines how many times the
animation should run.

Here, we tell CSS to run
grow two times instead of
one.

.plant {
 animation-name: grow;
 animation-duration: 6s;
 animation-delay: -2s;
 animation-iteration-count: 2;
}

@keyframes grow {
 0% {
 height: 0;
 }
 100% {
 height: 80px;
 }
}

In your CSS:

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations

Properties
Other animation properties:

animation-iteration-count
defines how many times the
animation should run.

We can also tell grow to run
forever.

.plant {
 animation-name: grow;
 animation-duration: 6s;
 animation-delay: -2s;
 animation-iteration-count: infinite;
}

@keyframes grow {
 0% {
 height: 0;
 }
 100% {
 height: 80px;
 }
}

In your CSS:

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations

Properties
Other animation properties:

Normally an animation runs
from the 0% keyframe to the
100% keyframe.

animation-direction lets you
run the animation in reverse,
alternate (0➞100➞0), or
alternate-reverse
(100➞0➞100).

.plant {
 animation-name: grow;
 animation-duration: 6s;
 animation-delay: -2s;
 animation-iteration-count: infinite;
 animation-direction: reverse;
}

@keyframes grow {
 0% {
 height: 0;
 }
 100% {
 height: 80px;
 }

In your CSS:

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations

Properties
Other animation properties:

animation-timing-function
lets you specify the “timing
curve” between styles in each
keyframe, similar to CSS
transitions.

Here, we tell grow to happen
at a steady pace.

.plant {
 animation-name: grow;
 animation-duration: 6s;
 animation-delay: -2s;
 animation-iteration-count: infinite;
 animation-direction: reverse;
 animation-timing-function: linear;
}

@keyframes grow {
 0% {
 height: 0;
 }
 100% {
 height: 80px;

In your CSS:

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations

Properties
Other animation properties:

animation-timing-function
lets you specify the “timing
curve” between styles in each
keyframe, similar to CSS
transitions.

Other possible values allow
you to accelerate (ease), or
stop and go (step).

.plant {
 animation-name: grow;
 animation-duration: 6s;
 animation-delay: -2s;
 animation-iteration-count: infinite;
 animation-direction: reverse;
 animation-timing-function: ease-in;
}

@keyframes grow {
 0% {
 height: 0;
 }
 100% {
 height: 80px;

In your CSS:

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations
https://developer.mozilla.org/en-US/docs/Web/CSS/animation-timing-function

Keyframes
Your animation can have
multiple keyframes.

Each keyframe can involve
multiple style changes.

@keyframes grow {
 0% {
 height: 0;
 background-color: SpringGreen;
 }
 50% {
 height: 20px;
 background-color: ForestGreen;
 }
 100% {
 height: 80px;
 background-color: DarkGreen;
 }
}

In your CSS:

Multiple anims.
You can also apply multiple
animations to the same
element.

First, we start by defining
two animations’ keyframes.

@keyframes grow {
 0% {
 height: 0;
 }
 100% {
 height: 80px;
 }
}

@keyframes change-color {
 0% {
 background-color: springgreen;
 }
 100% {
 background-color: forestgreen;
 }
}

Multiple anims.
Then, we apply both
animations to our plant
element.

Here, we tell grow to run for
6 seconds and change-color
to run for 4 seconds.

.plant {
 animation-name: grow, change-color;
 animation-duration: 6s, 4s;
}

@keyframes grow {
 0% {
 height: 0;
 }
 100% {
 height: 80px;
 }
}

@keyframes change-color {
 0% {
 background-color: springgreen;
 }

Multiple anims.
Order matters!

The order that you provide
the animation-name values
determines the order that you
should provide the other
properties.

.plant {
 animation-name: grow, change-color;
 animation-duration: 6s, 4s;
 animation-delay: 2s, 1s;
 animation-timing-function: ease, linear;
}

@keyframes grow {
 0% {
 height: 0;
 }
 100% {
 height: 80px;
 }
}

@keyframes change-color {
 0% {

Shorthand property
The animation shorthand
property lets you apply an
animation in one line.

This could be nice for keeping
your code tidy, but it can also
be hard to decipher later on, so
use this decisively!

.plant {
 animation-name: grow;
 animation-duration: 6s;
 animation-delay: 2s;
 animation-timing-function: ease;
}

.plant {
 animation: grow 6s 2s ease;
}

https://developer.mozilla.org/en-US/docs/Web/CSS/animation
https://developer.mozilla.org/en-US/docs/Web/CSS/animation
https://developer.mozilla.org/en-US/docs/Web/CSS/animation

CSS Animation
(with JS for randomness)

Randomness
We can use Javascript’s
random number generator
to create animations that
are different each time you
refresh the page.

To start, let’s define a CSS
animation called sway, and
apply it to an element with
the class plant.

.plant {
 animation-name: sway;
 animation-timing-function: ease;
 animation-direction: alternate;
}

@keyframes sway {
 0% {
 transform: rotate(-10deg);
 }
 100% {
 transform: rotate(10deg);
 }
}

In your CSS:

Random animation-duration
In JS, we can assign a value to the plant element’s other animation
properties. Here, we are telling the plant to complete one sway cycle
every 5 seconds.

var plant = document.querySelector(“.plant”);

plant.style[“animation-duration”] = 5 + “s”; // “5s”

In your JS:

Random animation-duration
On a windy day, the plant sways quickly, every 3 seconds. On a still day,
the plant sways slowly, every 7 seconds. Any day is somewhere in
between, so we’ll get a random number from 3 to 7.

var plant = document.querySelector(“.plant”);

var number = 3 + Math.random() * 4; // random num from 3 to 7

plant.style[“animation-duration”] = number + “s”; // “4.1827s”

In your JS:

Random animation-delay
What if we want to find the plant in a different place each time?
Remember that you can start an animation midway through its keyframes
by using a negative animation-delay value.

In your JS:
var plant = document.querySelector(“.plant”);

plant.style[“animation-delay”] = -2 + “s”; // “-2s”

Random animation-delay
So, if the plant’s sway animation takes 5 seconds, we’ll want to start the
animation at an offset of something between -5 to 0 seconds.

In your JS:
var plant = document.querySelector(“.plant”);

var number = -1 * Math.random() * 5; // random num from -5 to 0

plant.style[“animation-delay”] = number + “s”; // “-1.8295s”

Random animation-duration and -delay
Keeping it simple, you can give the plant different random values for
animation-duration and animation-delay…

In your JS:
var plant = document.querySelector(“.plant”);

var duration = 3 + Math.random() * 4; // random num from 3 to 7
plant.style[“animation-duration”] = duration + “s”;

var delay = -1 * Math.random() * 5; // random num from -5 to 0
plant.style[“animation-delay”] = delay + “s”; // “-1.8295s”

Random animation-duration and -delay
If you are a statistical stickler, you may notice that there are some
unreachable combinations of duration and delay here. For true, uniform
randomness, you’ll want to make the delay relative to the duration…

var plant = document.querySelector(“.plant”);

var duration = 3 + Math.random() * 4; // random num from 3 to 7
plant.style[“animation-duration”] = duration + “s”; // “4.12s”

var delay = -1 * Math.random() * duration; // 0 to -4.12
plant.style[“animation-delay”] = delay + “s”; // “-2.68s”

In your JS:

Randomness for multiple elements
If you have multiple elements with the class plant, you can select all of
the plants using document.querySelectorAll(), loop through each plant,
and change its style.

var plants = document.querySelectorAll(“.plant”);

for (var i = 0; i < plants.length; i++) {
 var plant = plants[i]; // the i-th plant element
 var duration = 3 + Math.random() * 4;
 plant.style[“animation-duration”] = duration + “s”;
}

In your JS:

Reference
CSS Animations — Mozilla Developer Network

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations

